The Screen-Oriented 6502-Debuggér

-

W T
U U

\‘

e

Bug Byter

programmed by TED COHN
design and documentation by PETE ROWE
© 1982 COMPUTER-ADVANCED IDEAS, INC

Disclaimer of All Warranties and Liabilities

Computer-Ad¥anced Ideas, Inc. makes no warranties, express or implied to
the quality, performance, merchantability or fitness for any particmlar
task of the software package and manuals known as "Bugbyter.” This soft-
ware is sold "as is." All risk pertaining to its performance, reiliability
and suitability for a given task is with the buyer. Computer-Advamced
Ideas, Inc. will not be held liable for direct, indirect, incidemtal or
consequential damages resulting from any defect in the software or mammuals,
even if Computer-Advanced Ideas, Inc. has been advised of such defects.

In States which do not allow such exclusions, the above disclaimer may not
apply.

This manual and the software described herein is copyrighted. All rights
are reserved. This document and the software described may not, in whole

or part be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,
from Computer-Advanced Ideas, Inc.

(C) 1982 by Computer-Advanced Ideas, Inc.
1442A Walnut Street, Suite 341
Berkeley, California 94709
(415) 526-9100

ACKNOWLEDGMENTS

A bevy of special folks helped us in the design and implementation of
BUGBYTER and this manual. Their unselfish support deserves recognition.

Special thanks to Tim Aaronson for both design recommendations and
technical assistance.

Much gratitude for Geoff Zawolkow's assistance with design and documenta-
tion and Lawrence You's helpful suggestions.

Finally, our thanks to Carol Rowe and Arlan and Joan Cohn for their general
support and patience.

®eecccccccccce oo

Even the earliest computers had their problems, and
even then they were called "bugs." According to Navy
Captain Grace Murray Hopper, a pioneer in computer
technology during World War II, the first computer "bug"
was discovered at Harvard in August 1945.

Hopper, 74, said she and her associates were
working on the Mark I, which she affectionately calls
“"the granddaddy of today's computers."

"Things were going badly; there was something
wrong in one of the circuits of the long, glass-enclosed
computer,” she said recently. "“Finally, someone located
the trouble spot and, using ordinary tweezers, removed
the problem -- a two-inch moth. From then on, when
anythieg went wrong with a computer, we said it had bugs
in it.

CONTENTS

TABLE OF CONTENTS

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

I

II

III

Iv

Vi

VII

INtroduction ...cccecccronsceccnsncnrnccrosoanss

General Description
Operational Compatibilities
System Requirements

How to Use This Manualcccecccccsonssnccoscns

Nomenclature
File Backup
Recommended Reference Material

A Quick Tutorial .eceeecesocosccosossssosssnsesas

Self-contained Tutorial Using HIRES EXAMPLE

Operation +.eeeeveecsoccossocnsssonsssonssassanns

Operating Characteristics
BUGLOADER
Restarting

Bugbyter DiSpPlayS ceceescesccsccssosssasoasansos

Master Display
Subdisplays 1 thru 6
SET Command

Selected COMMANAS coeesoecsossossscscossancsssnss

Command Line Editor

Assembly (ASM) and Disassembly (L)
Calling the Monitor (M)

Issuing DOS Commands (.)

Screen Control (ON/OFF)

Register Reference

Base Conversions

Memory Reference ...ceeieeerocssoscssssocsscsencnonsas

MEM Command
Memory Display Page
Memory Assignment

.

.

11

13

20

23

Chapter VIII

Chapter IX

Chapter X

Chapter XI

Appendix A

Appendix B

Index

CONTENTS

Trace/Single-Step MOAE severvssrensonsesossnnsnnnnns

General Operation

Setting Options

Single Keystroke Commands
Rate Adjustments

CAUTION -- Memory Contention
CAUTION -~ Real-Time Code
CAUTION -- Screen Contention

Breakpoint® seosssvsscosssasasssosnsnsncansnsnsisoina

Soft

General Description
Breakpoint Subdisplay
Setting Breakpoints
Transparent Breakpoints
Real Breakpoints
Commands: J and G

SWIitCRES ittt eeeenoesoennesnesasssnssnanannnas

General Description

Executing Undefined Opcodes

Paddle Button O to Suspend Trace

Paddle O to Adjust Trace Rate

Trace Keyboard Polling

Sound

Cycle Counter

Real-Time Code Addresses (see next chapter)

Real-Time EXeCUtiONn teeeeeereveoossceoossnnsosaacsns

Real-Time Code Debugging

Bugbyter Referenceeveieeceecescnsssssosensanans

Technical Specifications t.eeeeesseessesossnescannns

D I I R R I I I I I N T I N I S I TR,

25

29

31

33

34

39

40

INTRODUCTION

CHAPTER |

INTRODUCTION

Computers of larger size and complexity than Apple personal computers
have static front-panel displays to report to the operator on the current
status of the Central Processing Unit (CPU). They usually contain a few
banks of binary lights that display just a few registers. Since the Apple
and other personal computers are not blessed with such an array of lights,
we conceived and designed Bugbyter as a customizable front-panel display
for the Apple II and Apple /// computers.*

Bugbyter is a relocatable, 6502 machine language, mnemonic debugger.
It features a user-definable display, literal and transparent breakpoints,
a resident assembler and disassembler, and is compatible with Apple DOS.

A major design criterion was to model Bugbyter's commands after the
Apple's Monitor (F8 ROM) command set. This forced-compatiblity should
enhance comprehension and acquisition of Bugbyter's command language by a
user already familiar with the Monitor ROM.

Another major design goal was to create a screen-oriented, user-
definable display optimized for the 40 by 24 character Apple screen. All
of the Apple's 6502 internal registers, a user-definable portion of the
stack, mnemonic disassembly, user-selected memory cells and breakpoints
and the command line are displayed on one Apple text screen. This has
three notable effects:

(1) At any given time while debugging a program, a Bugbyter user has
complete information on the status of the 6502 registers and stack.

(2) since Bugbyter displays all information via absolute screen
addressing, all input and output through Apple's I/0 hooks (CSW
and KSW) are unimpeded.

(3) Due to the screen-oriented display and non-I/0 hook screen
addressing, Bugbyter is not suited for serial, scrolling output
to a printer.

A third major goal in the design of Bugbyter was to minimize memory
contention. Bugbyter resides in approximately 6000 ($1A00) bytes of
contiguous RAM, anywhere in the Apple's RAM from just above the text screen
($800) to just below the Monitor ($F800). Bugbyter also needs some zero page
memory. However, the contents of these zero page cells are saved prior to
Bugbyter's use and then restored, thereby eliminating any zero page conten-
tion. Bugbyter does use the first 32 bytes of the 6502's stack ($100 to 11F)
and is unable to save or restore them. Any attempt of the user's program to
alter the beginning of the stack could result in a collision between Bugbyter
and the program being traced. Bugbyter flashes a warning at the displayed
stack pointer when a user or user's program moves the stack pointer anywhere
between $100 and $11F as discussed in the next chapter and Appendix A.

* Apple is a registered trademark of Apple Computer, Inc.

INTRODUCTION

The last major feature added to Bugbyter prior to the production of
this manual was real-time subroutine execution. Any 6502 code contained
in a user-specified region that gets called as a subroutine will execute
at the full speed of the processor. Therefore, any code that,

(1) need not be traced -- for example, the Apple Monitor character
display code, or

(2) needs to execute in real-time -- for example, the low-level disk
routines and paddle A to D conversion code

can execute at the full speed of the Apple's 6502 CPU.

Bugbyter is provided on a standard, 13-sector format, unprotected 5 1/4°'
diskette that will boot on a 48K Apple II or Apple II plus, 13- or l6-sector
format. The Bugbyter diskette will also boot on an Apple /// using the
standard Emulation diskette. All the files on the Bugbyter diskette can
be moved to another 13-sector or lé-sector diskette (see next chapter and/or
an Apple DOS 3.2 or 3.3 Reference Manual).

NOMENCLATURE / BACKUP

CHAPTER I

HOW TO USE THIS MANUAL

It is possible to use Bugbyter without reading this entire manual. The
next chapter, "A Quick Tutorial," contains enough information necessary for
minimal operation of Bugbyter. Later, you can assimilate more Bugbyter
commands and functions by referring to specific chapters in this manual.

We highly recommended that any learning of Bugbyter occur at the keyboard
of your Apple.

NOMENCLATURE USED IN THIS MANUAL

All addresses are hexadecimal unless otherwise stated. Sometimes
the manual includes a hex modifier -- sometimes not. Therefore,
$5FF is equivalent to S5FF -- which is especially true for the
Bugbyter Master display.

In general, words that are in all capitals, for example, RETURN,
CTRL, B, ESC, refer to specific keys on the Apple's keyboard or to
a Bugbyter command like SET or MEM.

This manual differentiates between the Apple's "screen" (lores,
hire? and text) and Bugbyter's "displays" (Master, SET and memory
page) .

BACKUP

The Bugbyter diskette is not protected. This will allow you to backup
Bugbyter program files on another diskette. Use a 13-sector FID (FIle
Developer) to move Bugbyter to another 13-sector, preformatted diskette, or
MUFFIN to move Bugbyter files to a preformatted, l6é-sector diskette. Both
FID and MUFFIN are Apple utility programs normally distributed on the Apple
DOS 3.3 System Master and discussed in Appendices J and K of the accompanying
DOS 3.3 Manual. FID is normally distributed as a l6-sector program, but is
quite capable of operating in a l3-sector environment.

The original Bugbyter diskette is a 13-sector diskette "updated" by the
addition of a l6-sector boot sector added to allow for booting in both 13-
and l6é-sector environments. This makes whole diskette backups impossible.
Therefore, please use the above-mentioned backup procedures.

REFERENCES

Bugbyter is a tool for experienced programmers and a learning aid for
aspiring programmers. We recommend any of the following documents for refer-
ence and introduction to the 6502 microprocessor for either kind of user.

REFERENCE

Programming Manual, MCS6500 Microcomputer Family, 1976, MOS Technology,
950 Rittenhouse Rd., Norristown, PA 19401. Pub. #6500-50A.

[The standard reference for programming the 6502 by the company that designed
that microprocessor].

6502 Microprocessor Instant Reference Card, 1980, Micro Logic Corp.,
POB 174, Hackensack, NJ 07602. Product #101A.

[An excellent, single-card chart of everything you want to know about
programming the 6502].

Applications Information SY6500 Microprocessor Family, 1980, Synertek
Inc., POB 552-MS/34, Santa Clara, CA 95052.

[An in-depth pamphlet on 6502 internal operation including complete opcode
timing diagrams].

GUIDES

Lance Leventhal, 6502 Assembly Lanquage Programming, 1979, Osborne
McGraw-Hill, 630 Bancroft Way, Berkeley, CA 94710.

[A quite complete guide to programming the 6502, 6520 and 6522].

Roger Wagner, "Assembly Lines," Softalk Magazine. Softalk Publishing,
11021 Magnolia Blvd., N. Hollywood, CA 91601.

[An on-going column devoted to programming the 6502 in the Apple computer].

TUTORIAL

CHAPTER il

A QUICK TUTORIAL

is a concise tutorial to get you up and running quickly.

What follows
For more complete

This chapter will introduce a subset of Bugbyter commands.

operating instructions, refer to Chapters IV through XI.

(1)
(2)
(3)

(4)

Stack —m

Stack pointer

Boot the Bugbyter diskette.

At any time, press the ESC key to stop the animated title frame.

Type:
BRUN BUGBYTER and press RETURN

Your Apple Screen will now show the Bugbyter Master Display:

(C R B PC

A X Y S P NV-BDIZC }
0000 00 O 0000 00 00 00 FF 02 00000010

6502 registers:
PC,A,X,Y,S & P.
And ours: C,R,B
1F9: 7C
1FA: 7C
1FB: Al
1FC: D2
1FD: E3
1FE: D6
100: FF
101: FF
102: 00
103: 00
104: FF
105: FF
0000:4C BP POINT COUNT

TRIG BROKE

User-defined
memory cells

0000:4C
0000:4C
0000:4C

0000
0000
0000

0000
0000
0000

0000
0000
0000

0000
0000
0000

User-defined
breakpoints

Command Prompt

(5)

(6)
(7)

[l ol ol ol o
[N]

0000:4C 4 0000 0000 0000 0000

KifC) 1982 COMPUTER-ADVANCED IDEAS V1.10) «— Command line

Type:

.BLOAD HIRES EXAMPLE and press RETURN
Press RETURN again
Type:

300L and press RETURN

You have now loaded two sample routines (from one file: HIRES EXAMPLE).

(8) Your Bugbyter Master Display should now look similar to:

\:7

C R B

0000 00 O
P9 ¢
1FA: 7C
1FB: Al
1FC: 6F
1FD: BE
1FE: 66
100: BE
101: 66
102: BE
103: Cé6
104: 42
105: BE

0000:4C L

0000:4C L

0000:4C L

0000:4C L

0000:4C L

PC A X Y S P NV—BDIZE\
0000 00 00 OO0 FF 02 00000010

0300: LDX
0302: STX
0304: LDY
0306: STY
0308: LDA
030A: STA
030C: INY
030D: BNE
O30F: INC
0311: DEX
0312: BNE
0314: BRK
0315: BRK
BP POINT
1 0000
2 0000
3 0000
4

0000

#$20
$01
#$00
$00
#SFF

($00),

$030A
$01

$030A

COUNT
0000
0000
0000
0000

Y

TRIG
0000
0000
0000
0000

A2
86
AO
84
A9
91
c8
DO
E6
CA
DO
00
00

20
0l
00
00
FF
00

FB
0l

F6é

BROKE
0000
0000
0000
0000

9) Type:

300S and press RETURN

You are now in Single-Step mode.

TUTORIAL

Disassembly

Bugbyter will replace the disassembly
subdisplay with the first three instructions of the sample routine, with
the first instruction highlighted (inverse characters) and "SINGLE STEP"
displayed at the bottom of the screen.

The LDX #$20 is yet to be executed.

(10) Press SPACE. The PC (the program counter displayed at the top of the
screen) is now set to 302; the X and P registers now reflect the

LDX #$20 instruction just executed.

next page.

Refer to the screen image on the

TUTORIAL

(Ek R B PC A X Y s P NV—BDIZ;\
0000 00 O 0302 00 20 00 FF 30 00110000

1F9: 7C
1FA: 6F
1FB: BE
1FC: 66
1FD: BE

0300: LDX #$20 P:00110000
0302: STX $01

0304: LDY #$00

0306: STY $00

0000:4C L. BP POINT COUNT TRIG BROKE
0000:4C L 1 0000 0000 0000 0000
0000:4C L 2 0000 0000 0000 0000
0000:4C L 3 0000 0000 0000 0000
0000:4C L 4 0000 0000 0000 0000
EINGLE STEP

(11) Press: RETURN

You are now in Trace mode. Bugbyter will replace the words SINGLE STEP
with TRACE at the bottom of your screen and begin tracing.

(12) Press: H
You will now be viewing Apple hires screen page one and observing our
example routine slowly white washing the hires graphics screen one
row at a time.

(13) Press: T
You will return to the Bugbyter Master Display (Apple text screen).
At any time in Trace/Single-Step mode, you can press the SPACE bar to
enter Single-Step mode. Pressing the RETURN key, at any time, will
return you to Trace mode.

(14) Press: ESC

Now you are out of Trace/Single-Step mode and back into Bugbyter
command mode.

(15) Press: Q RETURN

You will return to Basic+DOS

TUTORIAL

TUTORIAL SUMMARY

Mode (Environment)

Basic+DOS :Bugbyter Command Trace/Single-Step

(boot Bugbyter diskette)
JBRUN BUGBYTER RETURN
.BLOAD HIRES EXAMPLE RETURN

300L RETURN

300S RETURN
SPACE
RETURN
H
T
ESC

Q RETURN

In HIRES EXAMPLE still in your Apple's RAM, at $316 exists another
small, sample routine that turns hires page one to black. Experiment
tracing this code or just use it to clear the hires page by typing:

316G and press RETURN

For a complete description of Bugbyter operations and functions, read
Chapters IV through XI. For a complete summary of Bugbyter
commands, refer to Appendix A.

10

OPERATION

CHAPTER IV

OPERATION

Bugbyter is 6.7K ($1A00), binary DOS file. To execute Bugbyter on a
48K+ Apple, from either Basic type:

BRUN BUGBYTER RETURN

At this time your disk drive will turn on, Bugbyter will load from $7C00 to
$95FF and your screen will contain the Bugbyter Master Display (see next
chapter for description of Master Display). The default starting address,
$7C00, was chosen to locate Bugbyter in the highest memory just below DOS
buffer one. Bugbyter, however, is relocatable and therefore can be loaded
and run at any address in memory with only minor restrictions.*

To select your own starting address, for example, $21B3, from either
Basic, type:

BRUN BUGBYTER,A$21B3 RETURN

Bugbyter will load from $21B3 to $3BB2. To use Bugbyter in a language oOr
RAM card, type the following:

BRUN BUGLOADER RETURN

which will automatically load and execute Bugbyter in your language card
starting at $D00OC. Running this little program, BUGLOADER, is equivalent to
manually typing from either Basic:

CALL -151 RETURN
C081 C081 F800<F800.FFFFM C083 C083 RETURN
BRUN BUGBYTER,A$D0O00 RETRUN

Bugbyter has its own variable storage, so the language card must not be
write-protected (the C083 C083 above). $D000 is the Bugbyter starting
address fixed in BUGLOADER. But Bugbyter can actually start at any address

in a language card with only the previously mentioned limitations (see
footnote this page*).

STARTING SUMMARY. Bugbyter will default start at $7C00. A user may
specify any starting address from $800 to $7C00 (or up to $A600 if DOS is
not required). Bugbyter may also be used in a language card from $D0O0O to
$DEOO. (Refer to Appendix B for an Apple memory map and a condensed list
of specifications).

* Memory restrictions: Bugbyter cannot begin in memory less than $800,
since that would result in placing Bugbyter program code into text screen
memory ($400-$7F7). Likewise, the $COO0O0-CFFF space is reserved for Apple
I1/0 and peripheral memory. And memory above $F800 must contain the old or
new auto-boot Apple Monitor.

1

OPERATION

Restarting. Once Bugbyter is loaded (BLOADed or BRUN) into memory,
you can use the load address to start or restart execution of Bugbyter.

Example:
BLOAD BUGBYTER,A$2000 RETURN

You can now start or later restart Bugbyter from either Basic with:

CALL 8192 RETURN
or

CALL 1016 RETURN (page 3, CTRL Y vector)
Or from the Monitor with either:

2000G RETURN
or

CTRL Y RETURN

BLOADing vs. BRUNning. As mentioned in the Introduction, Bugbyter is a

non-protected program. You are encouraged to backup your Bugbyter files.
The approved method of transferring a Bugbyter file is:

BLOAD BUGBYTER,A$7C00 RETURN
Insert a format equivalent diskette (13- or l6-sector) and type:
BSAVE BUGBYTER,A$7C00,L$1A00 RETURN

Note that you did not BRUN Bugbyter first. BRUNning Bugbyter results in
execution of a self-modifying sequence that fixes it to the address it was
BRUN at. For example, if you typed:
BRUN BUGBYTER,A$1234 RETURN
:Q RETURN (from inside Bugbyter)
BSAVE NEWBUGBYTER,A$1234,L$1A00 RETURN
You would create a Bugbyter program file (NEWBUGBYTER) that could only be

BRUN at $1234 from now on. In other words, the self-modifying sequence that
allows Bugbyter to be relocatable is a one-shot, non-reversible operation.

12

MASTER DISPLAY

CHAPTER V

MASTER DISPLAY

The Bugbyter Master Display is divided into six subdisplays:

(' 1
(1) Registers: 6502 and
Bugbyter.
(2) 6502 Stack with Stack
Pointer Highlighted.
2 3
(3) Code Disassembly and
Trace/Single-Step Options.
(4) User-selected Memory
Cells.
(5) User-selected Breakpoints. 4 5
(6) Bugbyter Command Line. \\7 6

A typical Bugbyter display looks like this:

(R B PC A X Y s P NV-BDIZC\
0014 00 O 030D FF 20 01 FF 30 00110000

1F9: C6
1FA: 42
1FB: 17

1FC: FB_ 0300: LDX #$20
0302: STX $O1
1FE: FB 0304: LDY #$00
1FF: FD 0306: STY $00
100: B3 0308: LDA #S$FF :
101: FB 030A: STA ($00),Y E:2000
102: 17 030C: INY E:
103: 26 [030D: BNE 3030]
104: 17 030F: INC SO1
105: 6B 0311: DEX

[oRolo N R
o~~~ e~~~
NDONWN WN
[e

0000:2000 BP POINT COUNT TRIG BROKE
2000:FF 1 030F 0000 0001 0000
0000:00 @ 2 0000 0000 0000 0000
0000:00 @ 3 0000 0000 0000 0000
0000:00 @ 4 0000 0000 0000 0000

\ J

13

REGISTER SUBDISPLAY 1

In the

registers at the top of the screen.

PC is
A is
X is
Y is
S is
P is

REGISTER SUBDISPLAY

above Master Display, Bugbyter is displaying the six 6502

the Program Counter
the A-register

the X-register

the Y-register

the Stack pointer

the Processor status

Note that in the far upper right,

represented

as a two-digit hex number,

individual bits (NV-BDIZC), where:

N is
VvV is
- is
B is
D is
I is
Z 1is
C is

the Negative bit
the oVerflow bit
unused

the Break bit

the Decimal bit
the Interrupt bit
the Zero bit

the Carry bit

They are as follows:

In This Example
030D
FF
20
01
FF

30

the processor status (P) is not only

but is also broken down into its

In This Example
0

0

The three remaining registers at the top of the screen in the register

subdisplay are:

C (see Option=E in Trace/Single-Step Chapter VIII), R

for Trace rate (see Chapter VIII) and B for breakpoints IN or OUT (see

Chapter IX).

14

STACK SUBDISPLAY

STACK SUBDISPLAY 2

Just below and to the left
of subdisplay 1 is subdisplay 2,
a window into the 6502's stack.
This stack subdisplay contains

a column of ascending addresses 2 .
and an adjacent column of
corresponding contents of the
stack address cells.
_/
C R B PC A X Y S P NV-BDIZC
0014 00 O 030D FF 20 01 FF 30 00110000
1F9: C6
1FA: 42
1FB: 17
1FC: FB 0300: LDX #$20 E: (2)
1FD: FD 0302: STX $01 E: (3)
1FE: FB 0304: LDY #$00 E: (2)
0306: STY $00 E: (3)
100: B3 0308: LDA #S$FF E: (2)
101: FB 030A: STA ($00),Y E:2000 (6)
102: 17 030C: INY B (2)
103: 26 [030D: BNE $030]
104: 17 030F: INC $01
105: 6B 0311: DEX
0000:2000 BP POINT COUNT TRIG BROKE
2000:FF 1 030F 0000 0001 0000
0000:00 @ 2 0000 0000 0000 0000
0000:00 @ 3 0000 0000 0000 0000
0000:00 @ 4 0000 0000 0000 0000

t

_J

Notice that one row in the stack subdisplay is in highlighted,

inverse video

(in the above example, 1FF: FD). This signifies the current address of the
stack pointer as confirmed by the FF in the register subdisplay 1.

15

STACK SUBDISPLAY

Setting the stack pointer. Type:

S=E0 RETURN
Three changes should occur to Bugbyter's Master Display:

(1) The command line (bottom of the screen) should display S=EO0 and then
clear after the RETURN key is pressed, leaving just the command prompt

(2) The stack pointer value in subdisplay 1 should change to EO (under the
letter S).

(3) The stack window should show the new stack pointer address (1E0) in
the center of subdisplay 2.

< R B PC A X Y s P NV—BDIZ;\
0014 00 O 030D FF 20 01 EO 30 00110000

1DA: C6
1DB: 42
1DC: 17

1DD: FB 0300: LDX #$20
1DE: FD 0302: STX $01
1DF: FB 0304: LDY #$00
0306: STY $00
1E1: B3 0308: LDA #$FF
1E2: FB O030A: STA (§$00),Y
1E3: 17 030C: INY

1E4: 26 [030D: BNE $030]
1E5: 17 030F: INC $01

1E6: 6B 0311: DEX

o

2000

[l RN SN
~~~ o~~~ —~
NODWND WN

0000:2000 BP POINT COUNT TRIG BROKE
2000:FF 1 030F 0000 0001 0000
0000:00 @ 2 0000 0000 0000 0000
0000:00 @ 3 0000 0000 0000 0000
0000:00 @ 4 0000 0000 0000 0000

(Note: The contents of the stack in these and all the other examples in this

manual will no doubt differ from those on your screen. The stack addresses,
however, should match.

The stack pointer in subdisplay 1 shows the address as EO, while sub-
display 2 indicates the stack pointer as $1E0. The 6502's stack is fixed
in the second page of memory from $100 to $1FF. Bugbyter displays all stack
addresses as 1HH, a three-digit hex address. To adjust the stack pointer,
the 6502 requires only a single byte--TXS. Bugbyter allows either format for
adjusting the stack pointer. S=1E0 would have had the same effect as S=EO
in the above example.

16



DISASSEMBLY SUBDISPLAY

DISASSEMBLY SUBDISPLAY 3

Just to the right of the

stack subdisplay is the code
disassembly and options sub-
display 3.
window to display the user's
program code in the form:

address:opcode operand

As an example, type:

FCAS8L RETURN

Subdisplay 3 should show:

Bugbyter uses this

option

f

_ .

C R B
0014 00 O
1F9: 84
1FA: FF
1FB: F8
1FC: E6
1FD: 00
1FE: 85
100: FF
101: FF
102: 00
103: 00
104: FF
105: FF
0000:2000

2000:FF

0000:00 @
0000:00 @
0000:00 @

ki

A X Y s P NV—BDIZ;\

PC

033B 03 C4 D8 FF 00 00000000
FCAB: SEC 38
FCA9: PHA 48
FCAA: SBC #$01 E9 01
FCAC: BNE S$FCAA DO FC
FCAE: PLA 68
FCAF: SBC #3501 E9 01
FCBl: BNE $FCA9 DO F6
FCB3: RTS 60
FCB4: INC $42 E6 42
FCB6: BNE $FCBA DO 02
FCB8: INC $43 E6 43
FCBA: LDA $3C A5 3C
FCBC: CMP $3E C5 3E
BP POINT COUNT TRIG BROKE
1 O30F 0000 0001 0000
2 0000 0000 0000 0000
3 0000 0000 0000 0000
4 0000 0000 0000 0000

_/

In this example, subdisplay 3 contains a short disassembly of a part
of the Apple Monitor ROM's WAIT routine.

nearly identical with Apple's Monitor disassembler.

The disassembly display format is



COMMAND,

BREAKPOINT & MEM SUBDISPLAY

In the above example, the fourth line of the disassembly screen reads:

FCAC: BNE S$FCAA

DO

where: FCAC is the hex address
BNE is the 6502 opcode
$FCAA
DO FC

The actual bytes (DO FC) are in the Bugbyter's option field.
only one option (0=B) for disassemblies (L).
(See Chapter VIII).

in the Trace/Single-Step mode.

MEMORY CELL SUBDISPLAY 4

Just below the stack sub-
display 2 is the memory cell
subdisplay 4. User-selected
cells containing single bytes
and/or byte pairs (addresses)
are continually displayed in
the lower left corner of the
Bugbyter Master Display. See
Chapter VII for a full expla-
nation of function and use of
subdisplay 4.

FC

is the operand (an address in this case)
are the actual bytes in memory $FCAC and FCAB

There is

Six more options are available

/

\_

BREAKPOINT and COMMAND LINE

SUBDISPLAYS 5 and 6

Below subdisplay 3 is the
user-selected breakpoint subdis-
play 5. The user may select one
or more addresses that will
cause Bugbyter-controlled inter-
ruption of any program being
traced. Chapter IX is devoted
to the use of breakpoints.

The Bugbyter command line,
subdisplay 6, occupies the bottom
row of the Master Display. Enter
Bugbyter commands here using the
mini line editor discussed in the
next chapter (VI).

—

18



SET

SET

Subdisplays 1 and 6 are fixed. That is, two lines of the Bugbyter
Master Display are dedicated to register display (1) and one for command
entry and editing (6). The SET command allows you to alter the relative
size of the remaining subdisplays, 2, 3, 4 and 5, and the positions of the
stack pointer and next-instruction-to-be-executed demarkation in subdisplays
2 and 3. Type:

SET RETURN

and the Bugbyter Master Display will change to:

Cc R B PC A X Y s P NV—BDIZS\
0014 00 O 030D 03 70 D8 B7 00 00000000
13
12
11
10
9
8
7
6
5
4
3
2
I ]
BP POINT COUNT TRIG BROKE
i
2
3
4
Now you can: L¥ ,)

(1) Use the « and — keys to increase or decrease the number of break-
points which simultaneously decreases or increases the size of the
disassembly subdisplay. When satisfied, press the RETURN key to move
to the next subdisplay adjustment.

(2) Use the « and — keys to move the next-instruction-to-be-executed
inverse bar. The position of this bar divides the rows available in
subdisplay 3 among the instructions just executed (above the bar) and
instructions not yet executed (at and below the bar) for the Trace/
Single-Step mode. Press RETURN when satisfied with the bar postion.

(3) Use the « or — key to adjust the lines available for the stack (sub-
display 2) versus the MEM (subdisplay 4). Press RETURN to continue.

(4) Use the « or — key to position the stack pointer in stack subdisplay
2. Press RETURN to return to the Bugbyter Master Display.

The SET command does not affect the contents of any subdisplay except sub-
display 3. Specifically, any MEM registers or breakpoints that have been
assigned but are not displayed have not been lost. Using another SET
command to adjust the Master Display can make them reappear.



EDITOR & ASM

CHAPTER VI

SELECTED COMMANDS
THE COMMAND LINE EDITOR

The command line at the bottom of the Master Display is a 40 character,
horizontal scrolling window into a 128 character buffer. The following
keys have the standard Apple input functions:

RETURN accept user-entered commands from the beginning of the cursor
- move the cursor to the left one character
g move the cursor to the right one character

CTRL X delete entire command line

Five additional functions are available for Bugbyter command line editting:

CTRL B move the cursor to the beginning of the command line
CTRL N move the cursor to the end of the command line

CTRL D delete one character

CTRL I enter insert character mode (pressing any other editor

function key will cause you to exit from this mode).
CTRL C accept next keystroke verbatim

The SPACE bar has one special function: If the very first character you
enter on the command line is a space, Bugbyter will display the next avail-
able memory address (last used memory address plus one). This is very handy
for memory reference (see Chapter VII) and the ASM command (next section).

ASM

The Bugbyter ASM command is comparable to the Apple Monitor's mini-
assembler. That is, both the Apple mini-assembler and Bugbyter will accept
a hex address followed by a ":" followed by a 6502 instruction. For example,
type:

ASM RETURN

and Bugbyter will clear the disassembly subdisplay and place you in ASM mode.
Then type:

300:LDA COO0 RETURN

<space> BPL 300 RETURN

Notice that Bugbyter automatically calculates the next available address
($303) and even prints it on the command line before you type "BPL 300".
Each instruction entered will be placed at the bottom of the disassembly
subdisplay and the previously entered instructions will be scrolled up.

20



L M DOS

DISASSEMBLY (L)

To disassemble a block of code, Bugbyter will accept an: address L
RETURN or just L RETURN. Example:

FCA8L RETURN
will disassemble the first few lines of the Monitor's WAIT ($FCA8) routine.
L RETURN

will continue to disassemble a few more lines.

MONITOR (M)

To enter the Apple Monitor's command mode (*), press M RETURN. The
Monitor can be used for block memory moves (see Apple Reference Manual) a
feature not provided by Bugbyter. To return to Bugbyter command mode, press
CTRL Y and then RETURN.

DOS COMMANDS (.)

You can enter Apple DOS commands from the Bugbyter command line by
preceding them with a period. Example:

.CATALOG RETURN

Once the catalog listing (or any DOS operation directed through Bugbyter) has
been completed, press RETURN to re-enter Bugbyter.

NOTE: Any DOS errors will not leave you in Bugbyter after the error message,
is printed, but instead will return you to Basic. Type:

CALL 1016 RETURN

to re-enter Bugbyter. DOS errors encountered while Bugbyter is
located in the language card have more serious effects. Press the RESET key
to counteract the effects, then type: CALL 1016 RETURN.

REGISTER REFERENCE

All the registers displayed at the top of the Bugbyter Master display
are user assignable. For example, type:

A=8D RETURN

and the value immediately under the A (for accumulator) on the top row will
change to hexadecimal 8D. You can use C, R, PC, A, X, ¥, S or P followed by
an "=" followed by a hex value to assign any of these eight registers. B is
not a register (see Chapter IX--"Breakpoints") and NV-BDIZC is the binary
value of the P register (see Chapter V--"Register Subdisplay"). C and R are
special Bugbyter registers used in Trace/Single-Step mode (see Chapter VIII).

21



ON / OFF / Base Conversion

SCREEN DISPLAY (ON/OFF)

During the tracing of a program, Bugbyter is constantly updating its
Master Display. Typing:
OFF RETURN
will cause Bugbyter to turn off subdisplays 1 thru 5, the bulk of the Master
Display, leaving just the command line (subdisplay 6). This will result in
a marked increase in tracing speed and will eliminate contention over screen
usage with the program being traced. Typing:

ON RETURN

will return the Master Display to the Apple's screen with all registers
reflecting the most current state of the 6502.

BASE CONVERSION

Bugbyter allows simple conversions from hexadecimal to decimal:
$C3= RETURN
or
78D= RETURN
and decimal to hexadecimal:
+43= RETURN
or

-15119= RETURN

QUITTING (Q)

Press Q RETURN to exit Bugbyter and return to Basic+DOS.

22



MEMORY REFERENCE

CHAPTER Vil

MEMORY REFERENCE

There are two ways to display selected memory cells:

(1) Using the memory display page to display 184 contiguous memory cells in
both hexadecimal and ASCII;

(2) Using the MEM command to edit subdisplay 4.

MEMORY ASSIGNMENT

In command mode on either the Master or memory display screen, Bugbyter
can accept a memory assignment of hex bytes and/or ASCII characters. Example:

805: "HELLO" 8D

will assign the ASCII character string HELLO with the most significant bit on
("), followed by a hex 8D to memory cells 805 to 80A. Another Example:

2500: F 'C' 0 A3

will assign hex OF to address $2500, ASCII character C with the significant
bit off (') to address $2501, $00 to $2502 and $A3 to address $2503. Note
that Bugbyter allows free mixture of hex and ASCII (most signficant bit on
and off) in a memory assignment command.

MEM

Use the SET command if necessary to increase or decrease the size of the
MEM subdisplay 4. Then type:
MEM RETURN

which moves the cursor to the upper left corner of the MEM subdisplay. Bug-
byter will now accept any one to four digit hexadecimal address. Use the
— and <« keys to move to the next or previous address. Preceding an
address, you have the option to type:

H to display the contents of the address as hex and ASCII, or

P to display the contents of the address and address+l as a pointer
(most significant byte first).

To exit the MEM subdisplay, press the ESC key.



Memory Display

MEMORY DISPLAY PAGE

To display a screen's worth of hex and ASCII, type: address: RETURN.

Example:
AA60: RETURN

will cause Bugbyter to switch from the Master Display to a memory display
with $AA60 as the first address in the upper left corner.

/;;go: 2D 00 00 00 02 00 00 00 - ‘ﬂ\
AR68: 01 00 06 00 00 00 00 00

AA70: 00 00 00 03 00 AO AO A0

AA78: A0 A0 A0 A0 A0 AO AO AO

AA80: A0 AO A0 A0 AO AO AO AO

AA88: A0 AO A0 A0 AO AO A0 AO

AA90: AO AO A0 AO AO A0 AO AO

AA98: A0 A0 A0 AO AO A0 AO AO

AAAO: AO AO AO A0 AO AO AO AO

AAAS: AO A0 AO AO AO AO AO AO

AABO: AO 03 84 00 00 00 00 00

AAB8: Cl DO DO CC C5 D3 CF C6 APPLESOF
AACO: D4 E8 B7 BB B3 BB B4 00 Th7;3;:4
AAC8: CO 7E B3 21 AB 05 AC 57 @~3!+4E,W
AADO: AC 6F AC 2A AD 97 AD EE ,0,*-W-n
AAD8: AC F5 AC 39 AC 11 AD 8D ,u,9,Q-
AAEO: AE 17 AD 7E B3 7E B3 89 .w-"3"3
AAE8: AC 95 AC 86 AC 92 AC 7E ,U,F,R,~
AAFO: B3 7E B3 BD AC C9 AC BA 373=,1I,:
AAF8: AC C6 AC 7E B3 EO 00 FO ,F,~3‘@p
ABOO: 02 A2 02 8E 5F AA BA 8E B"BN_*:
ABO8: 9B B3 20 6A AE AD BB BS [3 j.-;5
AB10: C9 OD BO OB OA AA BD CA IMOKJ*=J

The cells are displayed in a manner similar to that of the Apple Monitor,
that is, eight cells to the line with the beginning address to the left of
the cells. Bugbyter, however, adds an extra feature. To the right of each

row of cells are the eight Apple ASCII characters corresponding to each of
the eight hex cells. Apple ASCII is:

00-3F inverse characters
40-7F flashing characters
80~FF normal characters (two sets of alphabetic characters)

The command line is still at the bottom of the screen and can accept another

"address:" or memory assignment or the ESC key to return to the Master
Display.

24



OPTIONS

CHAPTER VI

TRACE/SINGLE-STEP MODE

Bugbyter's Trace/Single-Step mode with its seven disassembly options
and seventeen single-keystroke commands, represents a powerful debugging
environment. Bugbyter is capable of tracing practically any executable
6502 program, including interrupt and timing-sensitive code. In general,
the Trace/Single-Step mode is simple to use, as exemplified by the tutorial
in Chapter III. But it also offers a variety of options and single keystroke
commands that vastly expand the Bugbyter's capabilities. This chapter will
cover these options and commands in Trace/Single-Step mode. The following
chapter will introduce the use of Breakpoints, an extension of the Trace/
Single-Step mode, for selective interruption of the program being traced.

OPTIONS

During Trace/Single-Step operation, on the right side of the dis-
assembly subdisplay, a user may select one of the following display options.
In Bugbyter command mode, BEFORE entering Trace/Single-Step mode, typing:

O=A RETURN will display the 6502 accumulator in binary

0=X RETURN will display the 6502 X-register in binary

o=Y RETURN will display the 6502 Y-register in binary

0=8 RETURN will display the 6502 Stack pointer in binary

o=P RETURN will display the 6502 Processor status in binary

=B RETURN will display the instruction bytes in hex

O=E RETURN will display computed effective addresses,
relative branches and instruction cycles.

The last option, O=E, is probably the most powerful of all the options and
requires some extra discussion. There are four 6502 addressing modes for
which the 6502 internally computes an effective address. They are:

mode example
indexed LDA $300,X
indirect JMP ($300)
indexed indirect LDA ($10,X)
indirect indexed LDA ($10),Y

The actual or effective address is computed based on the current contents of
registers or memory cells at the time of execution. During simulated
execution (Trace/Single-Step mode), with O=E set, Bugbyter will compute these
effective addresses and display them in the disassembly subdisplay. Also

the E option will display all relative branches (the hex byte operand of a
branch opcode) .

25



CYCLE COUNTS

At the far right of the disassembly subdisplay during Trace/Single-Step
with the E option set, are cycle counts, shown in parentheses, for each
instruction executed. For example, type:

C=0 RETURN (clears the Bugbyter cycle counter)

O=E RETURN (sets the Trace/Single-Step Option to E)

A=12 RETURN (sets the accumulator to §12) ’

FCA8S RETURN (executes the first instruction in Monitor WAIT routine)
R (is the Trace/Single-Step command--trace until RTS)

The Bugbyter Master Display will begin tracing the Monitor WAIT routine.
The command line, the bottom of the Master Display, will show:

TRACE AWAITING RTS

and the rest of the screen will be changing rapidly. After just a few
seconds, the screen will stop changing and look like the following:

C R B PC A X Y s P NV—BDIZ;\
041E 00 O FCB3 00 00 00 FF 33 00110011

1F9: 7C FCAC: BNE $FCAA E: FC (2)

1FA: 7C FCAE: PLA E: (4)
1FB: Al FCAF: SBC #$01 E: (2)
1FC: D2 FCBl: BNE $FCA9 E: Fé6 (3)
1FD: E3  FCA9: PHA E: (3)
1FE: D6 FCAA: SBC #$01 E: (2)
FCAC: BNE $FCAA E: FC (2)
100: FF FCAE: PLA E: (4)
101: FF FCAF: SBC #$01 E: (2)
102: 00 _FCBl: BNE SFCA9 E: F6 (2

103: 00 FCB3: RTS
104: FF FCB4: INC $42
105: FF FCB6: BNE $FCBA

0000:4C L BP POINT COUNT TRIG BROKE
0000:4C L 1 0000 0000 0000 0000
0000:4C L 2 0000 0000 0000 0000
0000:4C L 3 0000 0000 0000 0000
0000:4C L 4 0000 0000 0000 0000

EINGLE STEP j

The cycle counter register in the upper left corner will show $41E (=1054
decimal) CPU cycles or approximately .00l seconds to execute the WAIT routine
when the accumulator is preset to $12. The cycle register will only count
during Trace/Single-Step mode and when option E is set.

Note: The cycle counter will not count when the Bugbyter Master Display is
OFF.

26



TRACE/SINGLE-STEP

Notice that the command line prompt (:) disappears when in Trace/
Single-Step mode. This signifies that the standard Bugbyter commands are
not available and only a new set of single keystroke, Trace/Single-Step
commands will be accepted. They are:

SPACE Single step one opcode.

RETURN Continuous trace.

ESC Return to Bugbyter command line.

R Trace until RTS opcode encountered.
- Skip next instruction.

c Clear Cycle Counter.

P Use Paddle O to adjust Trace Rate.

K Use Keyboard Rate (R=value) to adjust Trace Rate.
Q Sound off (Quiet).

S Sound on.

1 Display primary Apple screen.

2 Display secondary Apple screen.

T Display Apple Text screen.

L Display Apple Lores graphics screen.
H Display Apple Hires graphics screen.
F Display Full screen graphics.

M Display Mixed text and graphics.

All these keys need only one stroke to operate. Use the ESC key to exit from
Trace/Single-Step mode and return to the Bugbyter Master Display.

Trace/Single-Step mode may be re-entered and program code continued at
any time by typing: S RETURN or T RETURN. Bugbyter will retain the
Trace/Single-Step continuation address even when other Bugbyter commands and
operations are interspersed.

RATE ADJUSTMENT

During tracing, Bugbyter is interpreting each 6502 instruction of your
program. That is, the Apple CPU is executing the Bugbyter program, which in
turn is executing your program code. The obvious and visible result is
that code being traced with Bugbyter will execute slower than if it were
executed directly by the 6502 microprocessor. The rate of tracing can be
adjusted in the following ways:

(1) Before Trace/Single-Step mode is entered, type R= followed by a hex
value from O to FF; where O is the fastest rate (default) and FF is the
slowest. Then press RETURN.

~J

]



RATE

(2) During Trace/Single-Step mode, press the P key and use paddle O to
adjust the rate. (Pressing the K key will disable the paddle and
return to the keyboard entered rate).

(3) Before Trace/Single-Step mode is entered, type OFF and press RETURN
to disable the Bugbyter Master Display. This will greatly increase
the speed of tracing. (Type ON and RETURN after exiting from Trace/
Single-Step mode to restore the Master Display).

CAUTION — MEMORY CONTENTION

Bugbyter is a self-contained 6502 program that needs memory on the zero
page and the stack. Bugbyter saves to, then restores from internal memory,
all zero page cells it will use. The effect is NO zero page impact on
code being debugged by Bugbyter!

The same is not true for the stack. Stack locations $100 to 11F (the
first 32 decimal cells of the 6502 stack) are reserved for Bugbyter. If
the stack pointer is set to any address between $00 to $1F, Bugbyter will
alert you by flashing the ends of the stack pointer's inverse bar in the
stack subdisplay. Try to avoid using the beginning of the stack.

CAUTION — REAL-TIME CODE

Some code that you can trace may require execution in native 6502
mode, that is, it may need to execute at the full speed of the Apple's CPU.
Tracing it at any rate slower that 1 MHz per machine cycle will cause it to
function incorrectly or not at all. A prime example is the core routines
associated with the Apple's DOS. The read data, write data, read address and
track seek routines are very sensitive to cycle speed variation. These core
routines will not function at all if traced. Bugbyter does offer a solution,
a method of allowing subroutines to execute in native mode while tracing the
outer levels. See Chapter XI for a complete discussion of debugging real-
time code.

CAUTION — SCREEN CONTENTION

Many programs that you may trace will direct output to the same screen
Bugbyter uses--text screen page one. This is especially noticeable when
your program calls the Apple Monitor's scroll routine. To restore the
Bugbyter screen, you can type:

ON RETURN

28



BREAKPOINTS

CHAPTER IX

BREAKPOINTS

The Trace/Single-Step mode is described in the previous chapter and
understanding how to use it is a prerequisite of this chapter.

Breakpoints provide a means of selectively interrupting program
execution. Bugbyter offers two types of breakpoints, transparent and real.
Both types are monitored and managed by Bugbyter and are discussed in this
chapter.

BREAKPOINT SUBDISPLAY

In the lower right area of the Master Display is the breakpoint sub-
display. Use the SET command to increase or decrease the number of available
breakpoints. The breakpoint subdisplay has four field column headings:

POINT is the user-defined breakpoint address.

COUNT is the number of times the POINT address has been encountered.
TRIG is the user-defined count before breaking.

BROKE is the number of times Bugbyter has been TRIGgered.

To enter a breakpoint address, type "BP" followed by the breakpoint
row number. Example:
BP1 RETURN

Bugbyter will move the cursor to the first zero in the POINT field. Enter a
hexadecimal number for the address of breakpoint 1. Use the arrow keys to
move from field to field in breakpoint 1. Move to the TRIG field and assign
it a hex value greater than zero. (TRIG set to O will cause Bugbyter to
ignore breakpoint 1). During Trace/Single-Step mode, trans- parent or real
breakpoints are monitored such that every time a breakpoint address (POINT)
is encountered, the COUNT value is incremented and compared to the user-set
TRIG value for that breakpoint. When the COUNT equals the TRIG, Bugbyter
stops Trace mode BEFORE executing the instruction at the POINT address,
inverses the breakpoint row that caused the break in the breakpoint
subdisplay and exits from Trace/Single-Step mode. (It also clears the
COUNT). The user may continue tracing, that is, re-enter the Trace/Single-
Step mode, by pressing T RETJURN or S RETURN.

To clear a breakpoint, type: CLR followed by the breakpoing number and
RETURN. To clear all breakpoints, type: CLR RETURN.

TRANSPARENT BREAKPOINTS

The Bugbyter default method of monitoring breakpoints during tracing
is interpretive, that is, transparent. During Trace/Single-Step, operation
Bugbyter is monitoring the program counter (PC) and directly comparing the PC
to the POINTS set up in the breakpoint subdisplay. 6502 break opcodes (00)
are not installed (OUT) and therefore, do not cause program interruption.
(Break opcodes could of course exist in the original code being traced and
would cause Bugbyter simply to exit Trace/Single-Step mode).



BREAKPOINTS

From Bugbyter command mode (:), typing:
ouT RETURN

will force Bugbyter to transparent mode, break opcodes OUT. In the register
subdisplay at the top of the screen, under the B, should be the letter "O".

REAL BREAKPOINTS

From Bugbyter command mode, type:
IN RETURN

In the register subdisplay under the B, should now appear an "I". Bugbyter
will now install 6502 break opcodes (00) at all user-assigned breakpoints
(POINT addresses with their associated TRIG's set to greater than zero).

While tracing, Bugbyter will still monitor the program counter (PC) and
interrupt the Trace/Single-Step mode. Bugbyter also is capable of allowing
the 6502 to execute the program directly. Any break opcodes installed by the
IN command will return control back to Bugbyter, inversing the breakpoint row
that contains the POINT address in the breakpoint subdisplay and entering
Bugbyter command mode (just as with transparent breakpoints).

Two Bugbyter commands are available for initiating direct code
execution: From command mode, type: starting address G RETURN or
starting address J RETURN. Example:

300G RETURN
1A1FJ RETURN

If the starting address is left out of the command, Bugbyter will use either
the last trace address of the last starting address specified (whichever has
most recently been entered). The G command is similar to the Apple Monitor's
G command; a return from subroutine (RTS) will return to Bugbyter. Since a J
command does not push a return address on the stack, an RTS will use an
undefined address from the stack if encountered. When first executing your
code, type: starting address G RETURN. After encountering any break
opcodes, type:

J RETURN
to continue direct, real-time execution.

CAUTION: Once IN has been set, Bugbyter has altered your program by
inserting break opcodes at every POINT address. If you exit Bugbyter before
typing OUT, your code may be riddled with unwanted 6502 breaks. Be sure to
type:

our RETURN

to return your code to its original condition.
Also, in the IN mode, Bugbyter will not allow you to add, clear or

edit any breakpoints. Issuing the OUT command is necessary for any break-
point modification.

30



SOFT SWITCHES

CHAPTER X

SOFT SWITCHES

A group of "soft switches" are located near the beginning of the
Bugbyter program code. They are used to control some miscellaneous functions
described in this chapter. The heading "relative location" means the address
in RAM, offset from the beginning of Bugbyter. "Absolute location" assumes
the default starting address of $7C00. If you BRUN or BLOAD or use BUGLOADER
to relocate Bugbyter to another starting address, you will have to adjust the
"absolute location" accordingly.

UNDEFINED OPCODES

Relative Absolute
Location Location Function
start +3 7C03 execute undefined opcodes (default=0FF)

During Trace/Single-Step, Bugbyter will ignore illegal, undefined
6502 opcodes, when start +3 ($7C03) is set to 0. If start +3 is set to
$80, Bugbyter will execute all undefined opcodes. This is useful for
exploring undefined operations of the 6502. (Try tracing AF 58 FF).
Since Bugbyter does not know the length of the undefined opcode's operand,
Trace/Single-Step will assume no operand and just increment the PC by one.
It's up to you to SKIP (-> during Trace/Single-Step) past the operand, if
any, to the next opcode. Using Bugbyter with its complete register and
memory display will allow you to map all the undefined 6502 opcodes.

The following three soft switches can be set so as to remove the con-
tention of Bugbyter and your program over use of the paddle button, paddle
and keyboard.

PADDLE BUTTONO

start +4 7C04 use paddle button 0 for Trace suspend
(default=0FF)

Setting 7C04 to $80 (7C04:80 in command mode) will allow the use of
paddle button 0 to suspend tracing. Caution: If the paddles are not
connected to the Apple's Game 1/0 port, Trace will freeze your Apple --
disconnected paddles are equivalent to continuously pressing the buttons
with them connected.

(8]



SOFT SWITCHES

PADDLEO

start +5 7C05 use paddle 0 for Trace rate adjustment
(default=0OFF)

The Trace rate can be preset by keyboard input (R=value) or by pressing
P and transferring control to paddle O in Trace/Single-Step mode. Setting
$7C05 to 0 (7C05:0), will cause Bugbyter to ignore a user pressed P key
during Trace/Single-Step operation.

KEYBOARD

start +6 7C06 Trace/Single-Step keyboard polling
(default=0N)

During tracing, Bugbyter is sampling (polling) the Apple keyboard for
any of the Trace/Single-Step mode single keystroke commands. Therefore,
a program that is being traced that expects input from the keyboard will
never get a character unless Bugbyter's polling is disabled. Setting
$7C06 to any hex value with the most significant bit on will allow the
program being traced to accept all characters from the keyboard except one--
the Apple ASCII character that is set in $7C06. For example, if $7C06 is set
to $81 before entering Trace/Single-Step mode, Bugbyter will pass any and all
characters arriving from the keyboard except CTRL A ($8l1). Pressing CTRL A
will cause Bugbyter to stop tracing and return to command mode. This is
useful for tracing software that requires input from the keyboard like
Integer Basic.

SOUND

start +7 7c07 Sound switch (default=ON)
During Trace/Single-Step operation , pressing the Q key will turn off
the clicks and S will turn the clicks back on. The most significant bit of

$7C07 is affected directly by pressing Q or S during Trace/Single-Step mode
or by manually setting $7C07 in command mode.

CYCLE COUNTER

start +8,+9 7c08, 7C09 Cycle counter
During Trace/Single-Step operation with option E set (0=E), Bugbyter

will update the cycle counter displayed in the upper left corner of the
Master Display. $7C08,7C09 contain the low,high bytes of the C register.

Start +A to start +D ($7COA to $7COD), the last soft switches, are
discussed in the next chapter.

32



REAL-TIME

REAL-TIME EXECUTION

The last pair of soft switches (see previous chapter) allows for user
specification of a region of code that will execute in native 6502 mode,
that is, at the full speed of the Apple's CPU. Offset from the beginning of
the Bugbyter program by +$A and +$B is the user-definable starting address
of the region, and at offset +$C and +$D is the region's ending address.

Any subroutine calls (JSR's) to inside that specified region will cause
Trace/Single-Step mode to transfer full control over to the 6502 CPU. When
a return from subroutine (RTS) is encountered, the 6502 CPU will re-enter
Bugbyter Trace/Single-Step mode. Example: With 48K DOS in RAM, typing:

7COA:0 B8 FF BF RETURN (real-time starting address=$B800,
ending address=$BFFF)

300:JSR AS56E RETURN (DOS Catalog routine)

303:BRK RETURN (code termination)

OFF  RETURN (Master Display off)

300T RETURN (start tracing)

will cause Bugbyter to begin tracing the Apple DOS's Catalog routine
until there is a JSR to the Read-Write-Track-Sector (RWTS) routine at $BDOO
-- inside our real-time address region ($B800-BFFF). At that time, Bugbyter
allows RWTS to execute directly under the 6502 CPU -- seeking tracks and
reading sectors from the diskette in real-time. When the RWTS routine
exits back to DOS (RTS), Bugbyter is re-entered and the code that followed
the call (JSR) to RWTS is again traced under the Trace/Single-Step mode.

Note that the previous example executed fairly slowly. The reason was
that the Monitor ($F800 to FFFF) was outside the specified real-time region
and character output, especially text scrolling, was executing in Trace/
Single-Step mode, that is, slowly. To increase the execution speed, increase
the real-time region's range to include the Monitor. Type:

7COC:FF FF RETURN (ending address = $FFFF)

Then type:
300T RETURN

Notice the increase in speed. At any time, you can press the ESC key to
return to Bugbyter command mode. Also you can type:

ON RETURN

to resurrect the Master Display.



REFERENCE

APPENDIX A

NOTE: All addresses and values are in hex unless stated otherwise.

The ESC key is generally used to return to the command line.

COMMAND LINE EDITOR

NOTE: The command line is a 40 character window into a 128 character
buffer at the bottom of the Bugbyter master display.

Key Function
RETURN Accept user-entered command line.
SPACE If the first character, display next-available memory address
to be filled (used for memory reference and ASM command) .
«— Move cursor to the left.
- Move cursor to the right.
CTRL B Move cursor to beginning of command line.
CTRL C Accept next keystroke verbatim.
CTRL D Delete a character.
CTRL I Enter insert character mode (any other editor function

exits from this mode).

CTRL N Move cursor to end of command line.

CTRL X Delete command line.

GENERAL COMMANDS

ASM Enter assembler mode: Clear disassembly subdisplay and
display user-entered 6502 mnemonics--compatible with Apple
mini-assembler.

34



REFERENCE

addressL Disassemble code beginning at address (addressl) or
L continue disassembling (L).
M Enter Apple Monitor. Return to Bugbyter with CTRL Y.
SET Customize master Bugbyter display where:

- Moves window down.

- Moves window up.

RETURN Fixes subdisplay and advances to next subdisplay.

ON Turn Bugbyter master display on.
OFF Turn Bugbyter master display off.
.doscommand Execute DOS command. Press RETURN to return to Bugbyter.

+decimalvalue= Convert positive decimal to hex.
~decimalvalue= Convert negative decimal to hex (65536-decimalvalue).

value= Convert hex to decimal.

$value= Convert hex to decimal.

\' Display copyright and version number.

Q Quit Bugbyter (exits thru DOS vector $3D0).

REGISTER REFERENCE

PC=address Set 6502 Program Counter with hex address.
A=value Set 6502 A-register with hex value.

X=value Set 6502 X-register with hex value.

Y=value Set 6502 Y~register with hex value.

S=value Set 6502 Stack pointer with hex value.

P=value Set 6502 Processor Status register with hex value.
=value Set Bugbyter Cycle Counter to value.

R=value Set Bugbyter keyboard Trace Rate to value.



REFERENCE

EXECUTION COMMANDS

addressG Execute code as subroutine at address (addressG) or

G continue (G). An RTS returns to Bugbyter.

addressJ Jump to code at address (addressJ) or continue (J).

J Used with breakpoints.

addressT Enter Trace/Single-step mode starting at address (addressT)
T or continue (T). See Trace/Single-step commands.

addressS Enter Trace/Single-step mode and execute single opcode

s starting at address (addressS) or continue (S). See

Trace/Single-step commands.

MEMORY REFERENCE

address: Display 184 memory cells starting at address in hex and
ASCII. Use SPACE: to display next 184 cells. Press ESC to
return to Bugbyter Master display.

address:opcode Assign opcode mnemonic starting at address.
or
address:value Fill address with hex value.
or
address:"text" Fill address with ASCII character (MSB on).
or
address:'text' Fill address with ASCII character (MSB off).
or
(any mixture) Multiple values and ASCII text (MSB on or off) can be
mixed freely in memory fill. Slash (/) accepts the next
character verbatim.

MEM Edit memory subdisplay where:
H Display contents of address as hex and ASCII, or
P Display contents of address & address+l as pointer.

address Enter hex address of memory cell(s) to be displayed.

- or
SPACE or > Advance to next cell.

RETURN

— Return to previous cell.

ESsC Return to Bugbyter command line.

36



BDESASSEMBLY OPTIONS FOR TRACE/SINGLE-STEP

Pisplay 6502 Accumulator in binary.
Display 6502 X-register in binary.
Display 6502 Y-register in binary.

Display 6502 Stack pointer in binary.

O

Display 6502 Processor Status register in binary.
0=B Display instruction bytes in hex.

O=E Display computed effective addresses or relative branches
and instruction cycles.

TRACE/SINGLE-STEP

Once in Trace/Single-step mode (see T or S commands above), Bugbyter
will respond to the following single keystroke commands:

SPACE Single step one opcode.

RETURN Continuous trace.

EsSC Return to Bugbyter command line.

R Trace until RTS opcode encountered.
g Skip next instruction.

Cc Clear Cycle Counter.

P Use Paddle 0 to adjust Trace Rate.
K

Use Keyboard Rate (R=value) to adjust Trace Rate.

Q Sound off (Quiet).

S Sound on.

1 Display primary Apple screen.

2 Display secondary Apple screen.

T Display Apple Text screen.

L Display Apple Lores graphics screen.
H Display Apple Hires graphics screen.
F Display Full screen graphics.

M

Display Mixed text and graphics.



REFERENCE

BREAKPOINTS

BPn

IN

ouT

CLR

CLRn

Set breakpoint "n" where:

value Sets breakpoint field to value.
«— Moves to previous field
— or SPACE Moves to next field.

ESC or RETURN Returns to Bugbyter command line.

POINT is a user-defined breakpoint address.
COUNT is the number of times the breakpoint address was
encountered.
TRIG 1is the user-defined count before breaking. NOTE:
To cause a break, TRIG must be set to one or greater.
BROKE is the number of times Bugbyter triggered.

Insert BRK (00) opcodes into addresses specified in breakpoint
subdisplay. Disables breakpoint modification. (Used for
real-time debugging).

Replace BRK opcodes with original instructions at addresses
specified in breakpoint subdisplay. Enables breakpoint
modification. (Used for interpretive debugging--default).

Clear all breakpoints.

Clear breakpoint "n".

USER SOFT SWITCHES

Location Function
start+3 Execute undefined 6502 opcodes ($80=on, 00=off {default}).
start+4 Use button 0 for Trace suspend ($80=on, 00=off {default}).
start+5 Use paddle 0 for Trace Rate ($80=on {default}, 00=off).
start+6 Trace/Single-step keyboard polling

(MSB on + ASCII character code for escape character,

MSB off=normal polling {default}).
start+7 Sound ($80=on {default}, 00=0ff).
start+8, +9 Cycle Counter (low, high).
start+$A,+$B Beginning address of real-time code (default=$FFFF).
start+$C,+$D Ending address of real-time code (default=$FFFF) .

38



APPENDIX B

TECHNICAL SPECIFICATIONS

BUGBYTER:

48K motherboard RAM:

-is a debugging tool for software executing under the €502
-written in 6502 machine language
-has the default starting address: $7C00
-is $1A00 bytes (6.7K) in length
-contains self-modifying relocator
-is relocatable from $800 to $A600 or to a language or RAM card
($D000 to $DEOO -- see memory map below)
-requires Apple II or Apple II+ or II/E
*with disk drive
*with or without game paddles
-is compatible with Apple ///
-is distributed on a l3-sector format diskette that is bootable
on a 13- or l6-sector disk controller
~-reserves the first 32 decimal bytes of the stack ($100-11F)

(see memory map below)

Optional Language or RAM Card:

$BFFF: SFFFF:
DOSs Monitor
$9600: $F800:
Bugbyter
Bugbyter can reside
can anywhere
reside in here undefined
anywhere $D000:
in bank 2 bank 1
here
$800:
text screen
$400:
$200:
stack
$100: e first $20 bytes reserved ($100-11F)
zero page




INDEX

assembly (ASM)

backup
base conversion
booting
break opcodes (BRK)
breakpoints

real (IN)

transparent (OUT)
breakpoint assignment
breakpoint subdisplay

BROKE
BUGLOADER

CLR (clear)

command line
command line editor
compatibility

COUNT

CPU

cycle counter

jisassembly (L)
iisassembly display
iisplays
customize (SET)
Master
subdisplay
subdisplay
subdisplay
subdisplay
subdisplay
subdisplay
DOS

OUVth WN -

editting
effective addresses

features
G (execute)
HIRES EXAMPLE

IN
I/0 Hooks (CSW/KSW)

J (execute)
keyboard
language/RAM card
Master Display
MEM

MEM subdisplay

memory assignment
memory contention

20,34

4,5,12
22,35

4

29-30, 38
3,29-30,38
30,38

29-30, 38

29,38
13,18,19,29,38
29,38

11

29,38
13,18,19, 20,34
20,34

3,39

29,38

3-4
14,26-27,32,38

21,35
13,18,19

3,19
7,13-19
13,14,19
13,15-16,19
13,17,19
13,18,19
13,18,19
13,18,19
5,21,33,35

20,34
25,37

3-4,39
30,36
7

29-30,38
3

30,36
32,38
11,39
7,13-19
23,36
13,18,19

23,36
28,39

memory maps
memory reference
Monitor (M)
nomenclature

opcodes, undefined

operation
options (0=)
ouT

paddle

paddle button
POINT

quitting (Q)

rate adjustment
real-time

register subdisplay
restarting

screen display
SET
single-step (S)
soft switches
sound
specification
stack

stack pointer

stack subdisplay
system requirements
trace (T)

Trace/Single-Step
TRIG

undefined opcodes
version number

zero-page

39
23-24,36
3,21,35

5

31,38
11-12
25,37
29-30,38

27,32,38
31,38
29,38

22,35

27,37
4,28,33,38
13,14,19
12,21

3,22,35

19,35
8,25-28,36-37
31,33,38
27,32,38

39
3,13,15-16,19,
39

14-16
13,15-16,19
4,39

9,25-28,30,36-
37

25-28,37

29,38

31,38

35

3,28,39

40



Bugbyter is THE complete 6502 screen-oriented debugging tool.
Bugbyter is a relocatable mnemonic debugger; it features a user-
definable display, literal and transparent breakpoints, a resident
assembler and disassembler, and is compatible with Apple DOS.
# Displays all registers

u Offers full hex and ASCII 1/0

® Provides multiple options while in trace mode

m Offers RAM screen dump in hex and ASCI|

®m Allows single keystroke operation

® Furnishes instruction cycle counter

# Gives hexadecimal/decimal conversions

® Can run in add-on RAM card

B |s accompanied by comprehensive documentation
Computer-Advanced ldeas, Inc. is a major publisher of quality
educational and technical products. CAl software is recognized for

excellence of design, superior graphics, clear instructions and ease
of use. As aleader in its field CAl guarantees all of its products.

Computer-Advanced Ideas Inc.
1442A Walnut Street, Suite 341
Berkeley, CA 94709



